
ar
X

iv
:2

21
0.

07
91

4v
1

 [
cs

.F
L

]
 1

4
O

ct
 2

02
2

Model-checking lock-sharing systems against

regular constraints

Corto Mascle

LaBRI, Université de Bordeaux
corto.mascle@labri.fr

https://corto-mascle.github.io/

Abstract. We study the verification of distributed systems where pro-
cesses are finite automata with access to a shared pool of locks. We
consider objectives that are boolean combinations of local regular con-
straints. We show that the problem, PSPACE-complete in general, falls
in NP with the right assumptions on the system. We use restrictions on
the number of locks a process can access and the order in which locks can
be released. We provide tight complexity bounds, as well as a subcase of
interest that can be solved in PTIME.

Keywords: Distributed systems · Locks · Model-checking

1 Introduction

Concurrent programs often prove more challenging to verify than sequential ones,
as the state space explodes easily, unless processes follow very closely what the
others are doing or have completely decorrelated executions. Verification of such
programs can be traced back to the work of Taylor [12], and has been the subject
of a variety of approaches, which reflect the numerous possible modelisations of
distributed systems. Looking for an error trace is typically Pspace-hard when
processes are finite-state systems, i.e., the cost of exploring an exponential num-
ber of configurations. The reason is that most models of concurrent programs, be
it with rendez-vous, message passing, or shared variables, can encode the prob-
lem of deciding whether a set of deterministic finite automata have a common
accepted word. This is the case for instance for the classical model of Zielonka
automata [13].

We study lock-sharing systems (LSS for short), a simple model for concurrent
programs using mutexes. Processes have access to a pool of locks. Each process is
represented by an automaton whose transitions acquire and release locks. Locks
restrict the behaviours of the system, as a process cannot take a lock already
held by another process. Similar systems were considered by Gupta, Kahlon
and Ivancić in [9], with only two processes, each being a pushdown system.
They proved that the verification of regular constraints relating local runs was
undecidable, and provided a fine-grained analysis of the decidable cases in that
paper and later ones [7,8]. They also showed that detecting deadlocks is decidable

http://arxiv.org/abs/2210.07914v1
https://corto-mascle.github.io/

2 Corto Mascle

under some restrictions. This exact approach contrasts with other ones, such as
in [1] or [11], which tackle more general systems but use approximations of the
set of possible runs. Chapter 18 of [3] gives an overview of those works.

We consider the verification problem for the model studied in [6]. That paper
focused of synthesizing local strategies to avoid global deadlocks. Here we con-
sider a much larger family of properties: boolean combinations of local regular
properties. Unlike [6] we do not discuss the synthesis problem, but the model-
checking problem.

In this work we present an analysis of restrictions on lock-sharing systems
that suffice in order to obtain more tractable complexities than Pspace. We
mainly focus on two restrictions, 2LSS and nested LSS. The first one demands
that each process only accesses two different locks, the second one that each
process takes and releases locks as if they were stored in a stack: they can only
release the lock taken latest. Several works already showed the interest of the
nested restriction to obtain tractable verification problems, see for instance [2,9].
The contribution of [2] consists in an NP algorithm (and an implementation)
for detecting deadlocks (more specifically, configurations where some subset of
processes is blocked as they all try to acquire locks held by other processes of
that subset) in concurrent programs. They use a syntax for programs that can
be translated to what we call sound nested exclusive LSS in this paper. As for
the systems with two locks per process, they can already exhibit a variety of be-
haviours. Dijkstra’s famous dining philosophers problem matches this constraint.
These restrictions have a common point: local runs can be summarised in short
descriptions, called patterns. Patterns contain enough information to determine
whether local runs can be interleaved to form a global run. Some form of pat-
terns for finite runs of nested systems, called acquisition history, was already
considered in [9], but was only focused on systems with two processes and with
no considerations of complexity. In [6] patterns are defined on finite runs and
used to compute local strategies to prevent deadlocks in LSS. We show that we
can extend the techniques to handle much larger classes of specifications, in the
framework of verification.

In order to do this, we extend the notion of patterns to infinite runs and
provide necessary and sufficient conditions on patterns to represent runs that
can be interleaved into a (fair) global run. This allows us to verify the system
against local specifications by first guessing for each process a pattern, checking
compatibility of these patterns and then checking individually in each process the
existence of a bad run with the corresponding pattern. Thus we avoid exploring
the product of all processes.

This approach yields NP algorithms for the verification of (boolean com-
binations of) local specifications for 2LSS and nested LSS. With an additional
constraint, called exclusiveness, we even obtain a Ptime algorithm for some spe-
cific objective called process deadlock, which requires one given process to be
forever unable to advance after some point in the run.

We provide matching lower bounds for these results. In general our problem
is Pspace-complete, even with a bounded number of locks per process. It is NP-

Model-checking LSS 3

complete in the nested case, even with exclusiveness, for some weak objectives
(the hardness proof solves a question left open by the authors in [2]), and a
bounded number of locks per process. As for 2LSS, the problem is NP-complete
as well. Furthermore, those lower bounds make little use of the specification,
proving that the complexities are in some sense inherent to the systems.

Overview In Section 2 we recall some definitions and give some intuition about
the global framework. Then in Section 3 we generalise the notion of patterns
that was used in [6] (Definition 14), after which we present the results that we
are able to obtain through this technique: In Section 4 we discuss a particular
specification, for which the problem can be solved in Ptime for exclusive sys-
tems, and provide an NP lower bound when we do not assume exclusiveness. In
Section 5 we prove the Pspace-completeness of the general problem and con-
trast it with its NP-completeness in the 2LSS case. Finally, in Section 6, we
prove that the verification of nested systems is NP-complete, with a very robust
lower bound, that survives exclusiveness, weak objectives, and even a bounded
number of locks.

2 Definitions

First we recall the definition of a lock-sharing system

Definition 1 (Lock-sharing system). Let Proc be a finite set of processes.
A lock-sharing system (LSS for short) S = ((Ap)p∈Proc, T, op) is given by a

family of transition systems, a set T of locks, and a function op described below.
Each transition system Ap is given as a tuple (Sp, Σp, δp, initp) with Sp a

finite set of states, initp the initial state, Σp a finite alphabet and δp : Sp×Σp →
Sp a partial function. We require that the Σp are pairwise disjoint, and define
Σ =

⋃

p∈Proc Σp.
Consider a set of operations Op(T) = {gett, relt, nop | t ∈ T }. The function

op : Σ → Op(T) associates with each letter of Σ an operation on locks. For all
p ∈ Proc we define Tp = {t ∈ T | ∃a ∈ Σp, op(a) = gett} the set of locks p may
acquire.

A 2LSS is an LSS where every Tp has two elements.

Remark 1. In [6], the transition functions δp output a pair (s, op) with a state and
an operation. Here we will assume without loss of generality that the operation
of a transition is determined by its action; we can use Σ×Op(T) as our alphabet
instead of just Σ and thus explicitly describe the sequence of operations in the
actions.

We fix an LSS S = ((Ap)p∈Proc, T, op) for the rest of this section.
A local configuration of process p is a state from Sp together with the

locks p currently owns: (s,B) ∈ Sp × 2Tp . The initial configuration of p is
(initp, ∅), namely the initial state with no locks. A transition between config-

urations (s,B)
a
−→ (s′, B′) exists when δp(s, a) = s′ and one of the following

holds:

4 Corto Mascle

– op(a) = nop and B = B′;
– op(a) = gett, t /∈ B and B′ = B ∪ {t};
– op(a) = relt, t ∈ B, and B′ = B \ {t}.

A local run a1a2 · · · of Ap is defined as a finite or infinite sequence over Σp such

that there exists a sequence of local configurations (initp, ∅) = (s0, B0)
a1−−→p

(s1, B1)
a2−−→p · · · (we will specify explicitly when we talk about local runs that

do not start in the initial configuration).
We say that a finite local run wp = a1 · · · an is neutral if for all 1 ≤ i ≤ n such

that op(ai) = gett for some t ∈ T , there exists j > i such that op(aj) = relt.
Equivalently, the configuration obtained after executing wp is in Sp × {∅}.

A global configuration is a tuple of local configurations C = (sp, Bp)p∈Proc

provided the sets Bp are pairwise disjoint: Bp ∩ Bq = ∅ for p 6= q. This is
because a lock can be taken by at most one process at a time. The initial
configuration is the tuple of initial configurations of all processes.

Runs of such systems are asynchronous, with transitions between two consec-

utive configurations done by a single process: C
(p,a)
−−−→ C′ if (sp, Bp)

a
−−→p (s′p, B

′
p)

and (sq, Bq) = (s′q, B
′
q) for every q 6= p. A global run is a sequence of transitions

between global configurations. Since our systems are deterministic we usually
identify a global run with the sequence of transition labels. A global run w de-
termines a local run of each process: w|p is the subsequence of p’s actions in w.
We also say that w|p is the projection of w on p.

In what follows we will assume that each process keeps track in its state of
the set of locks it owns. Note that this assumption does not compromise the
complexity results provided there is a bound on the number of locks a process
can access: the number of states is then multiplied by a constant factor.

Definition 2. A process of an LSS is sound if its transition system Ap keeps
track of the set of locks it has in its states. Formally, let Ap = (Sp, δp, initp), p
is sound if there exists a function ownsp : Sp → 2Tp such that:

– for all local runs w = a1a2 · · · an ending in a state s, we have (initp, ∅)
a1−→

· · ·
an−−→ (s, ownsp(s)).

– for all states s ∈ Sp, there is no outgoing transition of s that acquires a lock
in ownsp(s) or releases a lock that is not in ownsp(s).

An LSS is sound if all its processes are.

Note that this property can be easily checked on a given LSS: it suffices to set
owns(initp) to ∅, apply a DFS to compute candidates for owns(s) for all states,
and then check consistency of owns with respect to each transition.

We want to be able to define deadlocks in terms of languages of runs. To
this end, we have to restrict our attention to process-fair runs, in which every
process is either blocked after some point or executes an action infinitely many
times. This is often called strong fairness in the literature. This way if a process
stops doing anything after some point in a run, it means it is blocked.

Model-checking LSS 5

Definition 3. A run w is called process-fair if for all p ∈ Proc, either w con-
tains infinitely many actions of Σp, or there is a point after which no action of
p can ever be executed at any moment in the run.

We say that a process-fair run yields a global deadlock if it is finite, i.e., at
some point there are no actions that can be executed in any of the processes, and
the system cannot advance any more. Note that a process-fair run is finite if and
only if it yields a global deadlock.

We say that a process-fair run yields a partial deadlock if its projection on
one of the Σp is finite, i.e., after some point one of the processes is never able
to execute any action.

In all that follows we will have to work with finite and infinite words si-
multaneously as LSS executions may be finite or infinite. We will use a dummy
letter �, and finite runs will be padded with an infinite suffix �

ω so that we can
express objectives as languages of infinite words.

From now on we will write u� for the padded version of a word u, i.e.,

u� =

{

u if u is infinite

u�ω if u is finite.

We will now define the set of properties we want to verify. This class of
objectives is inspired by Emerson-Lei automata, introduced in [4], which we will
use for several proofs of upper bounds. Note that we will use non-deterministic
Emerson-Lei automata, while our objectives are expressed using deterministic
automata.

Definition 4. An Emerson-Lei automaton (ELA for short) is a tuple A =
(S,Σ,∆, init, ϕ) with S a finite set of states, Σ a finite alphabet, ∆ : S×Σ ×S
a transition function, init ∈ S the initial state and ϕ a boolean formula over
variables {infs | s ∈ S}.

Such an automaton recognises a language L(A) ⊆ Σω. An infinite word w
is accepted if there is a run of w in A such that ϕ is satisfied by the valuation
evaluating infs to ⊤ if and only if s appears infinitely often in the run.

Our objectives are defined in a similar fashion, but with one automaton per
process and a single formula expressing a condition on which states (among the
ones of all automata) are seen infinitely often.

Definition 5. A regular objective is a pair ((Bp)p∈Proc, ϕ) such that each Bp is
a deterministic automaton with a set of states SBp

over the alphabet Σp ∪ {�},
and ϕ is a boolean formula over the set of variables {infp,s | p ∈ Proc, s ∈ SBp

}.

Let w be a process-fair run, and for each p let wp be its projection on Σp.
We say that w satisfies a regular objective ((Bp)p∈Proc, ϕ) if ϕ is satisfied by the

valuation evaluating infp,s to ⊤ if and only if the unique run of L(Bp) on w�p
goes through s infinitely many times.

We argue that these specifications are quite expressive and at the same time
allow us to stay in reasonably low complexity classes.

6 Corto Mascle

Regular objectives are expressive. They can express properties such as reacha-
bility (with local or global configurations) or safety, as well as properties related
to deadlocks, such as partial deadlock or global deadlock: As we focus on pro-
cess-fair runs, a local projection of a run is finite if and only if the corresponding
process is blocked at some point and has no available action for the rest of the
run. Hence, we can express for instance a global deadlock with an objective
requiring the local run of every process p to be finite.

Moreover, the flexibility of boolean formulas allows us to relate configurations
between processes: say each process has to decide between 0 and 1, then we can
express agreement by demanding that they all select 0 or all 1.

Regular objectives are furthermore closed under boolean combinations. They
can be complemented by simply taking the negation of the formula ϕ, and in-
tersected in polynomial time by taking the product automaton for each process
and adapting the formula.

Complexity blows up quickly with more expressive objectives Regular objectives
only restrict the shape of local runs without any requirement on their interleav-
ing. Restrictions on interleavings would lead to Pspace-hardness very quickly.
As we will see in Section 5, as soon as we can have a system where processes are
required to synchronize in some way, we also obtain Pspace-hardness.

Objectives that are sensitive to interleavings of local runs can be used to
test the emptiness of the intersection of languages of n DFAs, even without any
locks. We can take Proc = {p1, . . . , pn} and Σp = {ap, bp, cp} for all p and ask
for a global run in (ap1

· · · apn
+ bp1

· · · bpn
)∗(cp1

· · · cpn
)ω in the LSS constructed

from those DFAs.
In this work we study the problem of finding a run satisfying some given

regular objective.

Definition 6. We define the regular verification problem as:
Input: a sound LSS S and a regular objective RO = ((Bp)p∈Proc, ϕ)
Output: Is there a process-fair run of S satisfying RO?

Note that we define the problem existentially: we are looking for a bad run,
hence the given objective should express the set of runs that we want to avoid.
We use this formulation as it simplifies a bit our proofs, and as regular objectives
are easy to complement.

We also define the problem in the particular case of process deadlocks: Here,
we ask whether there is a run in which some given process p is eventually blocked
forever. We define it as our standard example of a “simple” objective. We will
show that we can decide it in Ptime in a particular case, and we will use it
for complexity lower bounds, thus showing that those complexities are already
inherent to the systems.

Definition 7. We define the process deadlock problem as:
Input: a sound LSS S and a process p.
Output: Is there a process-fair run of S whose projection on p is finite?

Model-checking LSS 7

As our last definition in this part, we introduce exclusive LSS, in which a
process that can acquire a lock cannot do any other operation from the same
state.

Definition 8 (Exclusive). A process is exclusive if its transition system Ap is
such that for all states s, if s has an outgoing transition acquiring some lock t,
then all other outgoing transitions acquire that same lock t. An LSS is exclusive
if all its processes are.

3 Patterns for 2LSS

In this section we define patterns for 2LSS. These are summaries of bounded size
of the operations executed during a run, which contain enough information to
tell if local runs can be combined into a global one. Let us first define a couple
of useful functions over local runs.

Definition 9. Given a finite local run wp = a0 · · · an of a process p, we define
Owns(wp) as the set of locks p holds after executing op(a0) · · · op(an).

We extend the function Owns to infinite runs by setting Owns(a1a2 · · ·)
as the set of locks kept indefinitely by p after some point. Formally, we define
Owns(a1a2 · · ·) =

⋃

i∈N

⋂

j>i Owns(a0 · · · aj).
The trace of an infinite run wp = a1a2 · · · , denoted by tr(wp), is the infinite

word A0A1 · · · ∈ (2T)ω with Ai = Owns(a1 · · ·ai) the set of locks held by p after
executing the first i actions of wp.

We also define Inf(w) as the set of sets of locks that p owns infinitely often
when executing wp:

Infp(a1a2 · · ·) = {A ⊆ Tp | A = Owns(a1 · · · ai) for infinitely many i}

We start with patterns of finite runs as in [6]. We redefine them here with a
formalism adapted to our purpose.

Definition 10 (Finitary patterns). Finitary patterns are defined for finite
local runs of a 2LSS. Let p be a process, Tp = {t1, t2} its locks. Let w = a1a2 · · · an
be a finite local run of p. The pattern of w is defined as the set Owns(w) along
with an information on its strength:

– If Owns(w) = {t1} (resp. {t2}) and the last operation on locks in w is relt2
(resp. relt1) then we say that w has a strong pattern, denoted as Owns(w)

– Otherwise we say that w has a weak pattern, denoted Owns(w)

In [6] the global deadlock problem was studied, so only patterns of finite runs
were of interest. We define patterns of infinite runs as we have to account for
the runs of processes that do not get blocked.

Definition 11 (Infinitary patterns). Let w be an infinite local run of a
process p accessing locks Tp = {t1, t2}. Let tr(w) = A0A1 · · · ∈ (2Tp)ω. The
pattern of w is given by Inf(w) along with an information on its strength:

8 Corto Mascle

– We say that w has a strong pattern Inf(w) when tr(w) ∈ (2{t1,t2})∗{t1, t2}{t1}ω

(the process has both locks at some point, releases one of them and does
not do any other operation on locks afterwards). Observe that in this case
Inf(w) = {{t1}}.

– Otherwise, w has the weak pattern Inf(w).

We say that w is switching if ∅ /∈ Inf(w) and Owns(w) = ∅. This means
that eventually, p never releases both locks, but releases each one infinitely often.
In particular, Tp ∈ Inf(w).

1 2 3

4

5

6
get

t1
get

t2

relt1 get
t1

relt2get
t2

Fig. 1. A process with a single infinite run whose pattern is {{t1}, {t2}, {t1, t2}}
(switching). It also has finite runs of patterns ∅, {t1}, {t1, t2}, {t2} and {t1}

Example 1. Consider the process p displayed in Figure 1. It has a single infinite
run, which eventually cycles between states 4 (in which it has only t2), 6 (in which
it has only t1), and 3 and 5 (in which it has both), hence it has as infinitary
pattern {{t1}, {t2}, {t1, t2}}, i.e., it is switching.

This system is sound, i.e., for all finite runs w, Owns(w) is determined by
its end state. Furthermore the pattern is strong if Owns(w) is a singleton and
the last operation in w is a rel, which is also determined by the end state in
this system. We can infer that all runs ending in state 1 have pattern ∅, in state
2 {t1}, in state 3 and 5 {t1, t2}, in state 4 {t2}, and in state 6 {t1}.

Note that for each of the patterns defined above, the set of runs matching
that pattern is a regular language. Although this fact is clear, we formalise it
in the following lemma. This allows us to give explicitly (very small) automata
recognising those languages, and we think that the proof of this lemma may help
the reader understand the relation between finitary and infinitary patterns.

Lemma 1. Let p ∈ Proc be a process.
For each pattern pat described in Definitions 10 and 11 we can define a

(deterministic) ELA Ap
pat (with 12 states) over the alphabet Σp∪{�} recognizing

the language consisting of w� with w a local run of p whose pattern is pat.

Proof. For all patterns we use the same states and transitions, which keep track
of the finitary patterns. They are described in Figure 2 with Tp = {t1, t2}. We
labelled edges with operations instead of actions as the transitions of an action

Model-checking LSS 9

∅

{1} {1}{2}{2}

{1, 2}

get
t2

relt1

get
t2

relt2

get
t1

relt2

get
t1

relt1

get
t1

relt2 relt1

get
t2

nop

nop

nop

nop

nop

nop

Fig. 2. The automaton structure for pattern recognition. Every state s has a transition

� to its copy s
�, with a � self-loop, which is not displayed.

a depend only on op(a) here. For each state s we have a transition labelled by

� leading to a copy s� of that state with only a self-loop labelled by �. The
desired pattern is then expressed as an Emerson-Lei condition to obtain an ELA.

For a finitary pattern pat the formula inf
pat�

suffices, to indicate that the

automaton read a run of pattern pat and then only �.
For an infinitary pattern such that Inf(wp) = {{t}} for some t, we have

to distinguish strong and weak. If the pattern is strong we use the formula
inf{t} ∧

∧

s6={t} ¬infs saying that we stay in state {t} indefinitely, otherwise we

use inf{t}
∧

s6={t} ¬infs saying that we stay in {t} indefinitely.
Otherwise we only have to check the set of sets of locks owned infinitely

often, hence we use the formula
∧

J∈Inf(wp)
ϕJ ∧

∧

J /∈Inf(wp)
¬ϕJ , where ϕJ is

infJ ∨ infJ if J is a singleton, and infJ otherwise.

We now present the key proposition on patterns for 2LSS. It states when a set
of local runs can be combined into a global run. Note that the criterion depends
only on the patterns of the local runs and the last states they reach. This will
be the crucial ingredient in the proof that the regular verification problem is in
NP for 2LSS.

Proposition 1. Consider a family of local runs (wp)p∈Proc (each of them can
be finite or infinite).

We write GInf for the undirected graph whose vertices are locks and with a
p-labelled edge between t1 and t2 whenever Tp = {t1, t2} and wp is switching.

10 Corto Mascle

For all finite wp let sp be its end state. We define the set of locks that can be
acquired from sp: Blocksp = {t | ∃a, op(a) = gett and δp(sp, a) is defined}.

The local runs (wp)p∈Proc can be scheduled into a process-fair global run if
and only if the following conditions are all satisfied.

1. If wp is finite then all outgoing transitions from its end state sp acquire a
lock.

2. All sets Owns(wp) are disjoint.

3. All Blocksp are included in
⋃

p∈Proc Owns(wp).

4. The intersection Owns(wp)∩
⋃

J∈Inf(wq)
J is empty for all pairs of processes

p 6= q such that wq is infinite.

5. There is a total order ≤ on locks such that for all p whose run wp has a
strong pattern {t1} (for finite runs) or {{t1}} (for infinite runs) we have
t1 ≤ t2; where t2 is the other lock used by p.

6. There is no process p such that (1) {t, t′} ∈ Inf(wp) and (2) there is a path
in GInf between t and t′ not using a p-labelled edge. In particular, GInf is
acyclic.

Proof. ⇒: We start with the left-to-right implication. Let (wp)p∈Proc be a fam-
ily of local runs, suppose they can be scheduled into a process-fair global run
w.

For all finite local runs wp, as w is process-fair, after some point p cannot
ever execute any action.

As a consequence, sp (the state reached after executing wp) cannot have
any outgoing transition executing rel or nop, as those can always be executed.
The locks of Blocksp are never free after some point, as otherwise p would be
enabled infinitely often on the run, so the run would not be process-fair. This
shows condition 1.

All finite runs wp stop while holding the locks of Owns(wp). All infinite wp

eventually acquire and never release the locks of their Owns(wp). Hence the
Owns(wp) sets need to be pairwise disjoint, proving condition 2.

Furthermore, if a lock is not in some Owns(wp) then it is free infinitely
often, and thus cannot be in Blocksp for any p, as w is process-fair. This
proves condition 3.

All locks of
⋃

J∈Inf(wq)
J are held by q infinitely often, hence they cannot

be in any Owns(wp) with p 6= q, which shows condition 4.

If a run wp of a process p using locks t1, t2 has a pattern {t1} or {{t1}} then
the last operation on t1 (when p acquires it for the last time) is followed by at
least one operation on t2 in the run w. We satisfy condition 5 by setting ≤ as an
order on locks such that t ≤ t′ whenever t is only acquired finitely many times
and there is an operation on t′ after the last operation on t in w .

We demonstrate condition 6 by contradiction. Say there exist such locks and
process, i.e., there exist t = t1, . . . , tn = t′ and p1, . . . , pn−1 without p such that
for all 1 ≤ i < n, pi accesses ti and ti+1 and wpi

is switching. Then all pi are
always holding a lock after some point.

Model-checking LSS 11

As {tn, t1} ∈ Inf(wp), this means that p holds tn and t1 simultaneously
infinitely often. Whenever that happens, processes p1, . . . , pn−1 have to share
the remaining (n− 2) locks, hence one of them holds no lock, contradicting the
fact that ∅ /∈ Inf(wpi

) for all i.
⇐: For the other direction, suppose (wp)p∈Proc satisfies all the conditions

of the list. We construct a process-fair global run whose local projections are the
wp.

To do so, we will construct a sequence of finite runs v0, v1, . . . such that
v0v1 · · · is such a global run.

We will ensure that the following property is satisfied for all i ∈ N:

For all processes p, after executing v0 · · · vi,

if Owns(wp) ∈ Inf(wp) then Owns((v0 · · · vi)|p) = Owns(wp) (1)

otherwise wp is switching and p holds one lock.

We will also make sure that all p with an infinite wp execute an action in
infinitely many vi.

The first run v0 has to be constructed separately as we require it to satisfy
some extra conditions. We construct v0 such that for all p:

– If wp is finite then v0|p = wp.
– If wp is infinite then wp = v0|pup with up such that for every prefix u′

p of up,
Owns(v0|pu′

p) ∈ Inf(wp). Furthermore if ∅ ∈ Inf(wp) then Owns(v0|p) = ∅.
In other words, we execute a prefix of each infinite run such that what follows
matches its asymptotic behaviour.

Construction of v0

– First, for all infinite wp such that ∅ ∈ Inf(wp), there exist arbitrarily large
finite prefixes of wp ending with p having no lock. Hence we can select one
of those prefixes v0|p, large enough for p to never hold a set of locks not in
Inf(wp) later in the run. We execute all such v0|p at the start. All locks are
free afterwards.

– We then execute for all other p with weak patterns, their maximal prefix
ending with p having no lock. All locks are still free.

– Then we execute all wp with strong patterns, in increasing order according to
≤ (see condition 5) on the locks tp such that Owns(wp) = {tp}. We execute
in full the finite ones, while for the infinite ones we execute a prefix v0|p such
that in the end p owns only tp and never acquires the other lock afterwards
(recall that Inf(wp) = {{tp}} in that case). Say we executed some of those
local runs, let p be a process such that wp has a strong pattern accessing
locks t1 ≤ t2, say we want to execute v0|p. By condition 2, all Owns(wp)
are disjoint, hence there is no other process q with Owns(wq) = {t1}. The
only locks that are not free at that point are the t such that t < t1 and
Owns(wq) = {t} for some q with a strong pattern. Therefore, both t1 and
t2 are free, and v0|p can be executed. In the end the aforementioned locks tp
are taken and all others are free.

12 Corto Mascle

– Then we consider the finite wp with non-empty Owns(wp) and weak pat-
terns. For those, we can execute the rest of the run (we already executed the
maximal prefix leading to them holding no lock), as all they do is take the
locks in Owns(wp), which are free by conditions 2 and 4.

– For the infinite wp with non-empty Owns(wp) and weak patterns, there are
two possibilities:
• The first is that p eventually keeps the same set of locks forever and

never executes any more operations on locks. Then its trace tr(wp) is
of the form either (2Tp)∗∅{t1}ω or (2Tp)∗{t1, t2}ω. In that case clearly
we can just execute the run until we reach a point after which p only
ever owns Owns(wp) forever. We can do this as all locks taken so far
are either in Owns(wq) for some q with finite wq or are in an element of
some Inf(wq) for some q. Thus all locks from those Owns(wp) are free
by conditions 2 and 4.

• The other possibility is that tr(wp) ∈ (2Tp)∗({t1}∗{t1, t2})ω with {t1, t2} =
Tp and Owns(wp) = {t1}. This happens if p ultimately holds one lock
forever and acquires and releases the other one infinitely many times.
At that point all locks that are taken are in some Owns(wp), thus by
condition 4 both locks of p are free. Hence we can execute enough steps
of wp to reach a point at which p holds only t1 and will only hold sets
of locks of Inf(wp) afterwards.

– Finally we consider the infinite switching runs wp. All those processes must
have Tp ∈ Inf(wp), hence by condition 4 all their locks are free. By condition
6, GInf is acyclic. We can therefore pick one of those processes p and a lock t
such that no other such process accesses t. We execute wp until p only owns
t will only own sets of locks of Inf(wp) afterwards. All locks of the other
such p are still free, hence we can iterate that step until we executed a prefix
of each of those p.

We have constructed a finite run v0 whose projection v0|p on Σp is such that
if wp is finite then wp = v0|p and if wp is infinite then v0|p is a prefix of wp such
that all local configurations seen later in the run are in Inf(wp). Moreover v0
satisfies property 1.

We now construct the remaining parts of the run. If all wp are finite then v0
proves the lemma (we can set all other vi as ε). Otherwise we must describe the
rest of the process-fair global run whose projections are the wp. We start with a
small construction that will help us define the vi.

Suppose we constructed v0, . . . , vi so that property 1 is satisfied for all j ≤ i.
Now suppose some lock t0 is not in any Owns(wp) and is not free after executing
v0 · · · vi. Then there exists a switching run wp1

with t0 ∈ Tp1
.

Let t1 be the other lock of p1, say it is not free. By property 1, p1 holds
only one lock and thus does not hold t1. By condition 4 t1 cannot be in some
Owns(wp), thus, again by property 1, as t1 is not free, there exists a switching
wp2

such that t1 ∈ Tp2
. Let t2 be the other lock of p2.

We construct this way a sequence of processes p1, p2, . . . and of locks t0, t1, . . .
such that Tpj

= {tj−1, tj} and wpj
is switching for all j. This sequence cannot

be infinite as each pj labels an edge in GInf , which is finite and acyclic.

Model-checking LSS 13

Hence there exists k such that tk is free. We can therefore execute wpk
until

pk holds tk and not tk−1, then execute wpk−1
until pk−1 holds tk−1 and not tk−2,

and so on until t1 is free.
Hence if a lock t is not in any Owns(wp) but is not free after executing

v0 · · · vi then we can prolong the prefix run so that t is free and some lock from
the same connected component in GInf is not. For all such t and i we name this
prolongation of the run πt,i.

Say we already constructed v0, . . . , vi, and that property 1 is satisfied for all
j ≤ i. We construct vi+1. Let p be either a process that never executed an action,
or if there are no such processes, the process whose last action in v0 · · · vi is the
earliest.

We prolong the current run so as to execute some actions of wp. If the next
action of wp applies an operation nop we can execute it right away. The next
action cannot execute a rel operation: After executing v0 all processes with
infinite wp only own sets of locks of Inf(wp). By property 1, if wp is switching
then after executing v0 · · · vi the process p holds one lock and will not release it
as it would be left with no lock and ∅ /∈ Inf(wp). If p is not switching then after
executing v0 · · · vi it holds Owns(wp) and cannot release any lock as it keeps
those forever.

Hence we are left with the case where the next action of p acquires a lock
t. If t is not free we apply πt,i to free it (and block another lock of the same
connected component of GInf). Note that after executing πt,i all processes with
switching runs still hold one lock, and the others have not moved.

– If wp is switching then p was already holding a lock t′, and it can then
take t and then run wp until it holds only one lock again, thus respecting
property 1.

– Otherwise p was holding Owns(wp) (by Property 1) and we have to let him
take t and then continue until p holds exactly Owns(wp) again.

• If we can do it right away we do so.
• Otherwise it means that p needs its other lock t′ to reach that next step,

and that this lock is taken. More precisely, it means that Owns(wp) = ∅
and ∅, {t, t′} ∈ Inf(wp).
As {t, t′} ∈ Inf(wp), by condition 6, t and t′ are not in the same con-
nected component of GInf . Hence we can execute πt′,i, without locking
t back, as πt,i and πt′,i use disjoint sets of locks and processes.
This ensures that both t and t′ are free, which allows p to take t and
proceed to the next point at which it holds ∅.

In both cases we end up in a configuration where p owns Ownsp, all processes
with switching runs hold exactly one lock, and the other processes did not
move, thus respecting property 1.

We have constructed vi+1, ensuring that property 1 is satisfied for i + 1.
Furthermore vi+1|p is non-empty for p a process with infinite wp which either
never executed anything before or executed its last action the earliest. This

14 Corto Mascle

ensures that all p with infinite wp execute infinitely many actions in v0v1 · · · .
Hence we obtain a global run v = v0v1 · · · such that for all p we have v|p = wp.

Furthermore we ensured that v is process-fair as all p with finite runs are
blocked: all such wp lead to a state from which only locks of Blocksp can
be taken, by condition 1, and by condition 3 all Blocksp are included in
⋃

p∈Proc Owns(wp), the set of locks that are never free from some point on.
As a result, there exists a process-fair run whose local projections are the wp,

proving the right-to-left implication.

Example 2. Consider two processes p and q with the same transition system,
displayed in Figure 1. We can prove that all process-fair runs of those two will
end in a global deadlock using patterns.

Say there is a run whose projection on one of them (say, p) is infinite, then
that projection wp has pattern {{t1}, {t2}, {t1, t2}}, meaning it will take and
release both locks infinitely often without releasing both at the same time after
some point.

Then q does not have a compatible run: It cannot have the same infinitary
pattern by condition 5 of Proposition 1. Furthermore, by condition 3 it cannot
have any finitary pattern besides ∅. However, its only run with that pattern is
the empty one, which ends in the initial state, from which there is a transition
executing gett1 , meaning that by condition 2 we should have t1 ∈ Owns(wp),
which is not the case. Thus there cannot be such a run.

4 Process deadlocks

While the complexity lower bounds presented in this work are robust to many
restrictions, we can still find some interesting properties that can be verified on
some systems in polynomial time. In [6] (Lemma 22 and Proposition 24) it was
proven that verifying if a “locally live” strategy on a 2LSS allows a run leading to
a global deadlock (in which all processes are blocked) can be done in polynomial
time. An immediate consequence of this is that verifying if a sound 2LSS in
which all states have at least one outgoing transition has a run yielding a global
deadlock can be done in Ptime.

From the results in [6] we can also extract the NP-completeness of finding a
global deadlock in a 2LSS when we allow states with no outgoing transitions.

4.1 A Ptime algorithm for exclusive 2LSS

Here we are interested in a different problem, the process deadlock problem.
We provide a polynomial-time algorithm based on a key lemma that lists the
different ways a process can be blocked.

Let S be a sound exclusive 2LSS and p a process of S.

Lemma 2. Let (sp, Bp)p∈Proc be a global configuration and for each process p
let u′

p be a local run starting in (sp, Bp) and such that u′
p is either infinite or

leads to a state with no outgoing transitions.

Model-checking LSS 15

There exists a process-fair global run w from (sp, Bp)p∈Proc such that for all
p its projection wp on Σp is a prefix of u′

p.

Proof. We construct w by iterating the following step: For each p we set u′
p =

vpwp with vp the prefix of u′
p executed so far. We select uniformly at random a

process p ∈ Proc. If it can execute the first action of wp then we let it do so,
otherwise we do nothing.

We iterate this procedure indefinitely. This produces a (possibly finite) global
run of the system such that its local projections are prefixes of the u′

p. We prove
that it is process-fair.

Let p ∈ Proc, assume that p has an available action at infinitely many steps.
As our LSS is exclusive, whenever p has an available action and is in some state
s, either all outgoing transitions are executing an operation nop or rel (and thus
can all be executed as the system is sound), or they all acquire the same lock
t (as the system is exclusive). Hence if one outgoing transition can be executed
, they all can and thus in particular the next action of u′

p is available. As a
result, p can execute the next action of up at infinitely many steps, and thus will
progress infinitely many times in up.

In conclusion, with this procedure we either reach a global deadlock, or we
always have an available action, implying that at least one process will be able
to progress infinitely many times and that the resulting run u is infinite. In the
latter case, all processes that can execute an action at infinitely many steps of
the run will do so, proving that the run is process-fair.

Definition 12. Define the graph G whose vertices are locks and with an edge

t1
p
−→ t2 if and only if the process p has a local run wp ending in a state where

all outgoing transitions acquire t2 and such that Owns(wp) = {t1}. We say that

wp witnesses the edge t1
p
−→ t2.

Lemma 3. For all p ∈ Proc, if there is a p-labelled edge t1
p
−→ t2 in G then

either t1
p
−→ t2 is witnessed by a run with a weak pattern or its reverse t2

p
−→ t1

is in G and is witnessed by a run with a weak pattern.

Proof. As p has an edge t1
p
−→ t2 in G, there is a local run which acquires both

locks of p at the same time. Let wp be such a run of minimal length. The last
operation in wp must be a get, by minimality, hence wp is of the form w′

pa with
op(a) = gett for some t ∈ {t1, t2}. Furthermore, suppose the last operation in
w′

p besides nop is a rel, then there is a previous configuration in wp in which p
holds both of its locks, contradicting the minimality of wp. Hence w′

p has a weak
pattern, and it leads to a state where p may acquire t, thus has to acquire t as
the system is exclusive. Furthermore p is then holding its other lock, therefore
w′

p witnesses an edge in G.

Lemma 4. If p has a reachable transition acquiring some lock t and there is a
path from t to a cycle in G then there is a process-fair global run with a finite
projection on p.

16 Corto Mascle

Proof. Let t = t0
p1
−→ t1

p2
−→ · · ·

pk−→ tk be such a path in G and let tk = t′1
p′

1−→

· · · t′n
p′

n−→ t′n+1 = t′1 = tk be such a cycle.

For all 1 ≤ i ≤ k we choose a run wi witnessing ti−1
pi
−→ ti. Similarly for all

1 ≤ j ≤ n we choose a run w′
j witnessing t′j

p′

i−→ t′j+1, and we choose it so that it
has a weak pattern whenever possible.

Case 1: If there exists j such that w′
j has a weak pattern, then we proceed as

follows: Let w′
j = ujvj so that uj is the maximal neutral prefix of wj . We execute

uj , leaving all locks free. Let m be the maximal index such that tm ∈ {t′1, · · · , t
′
n}.

We execute all wi in increasing order for 1 ≤ i ≤ m.
Then we execute w′

j+1 · · ·w
′
nw

′
1 · · ·w

′
j−1 and then vj . Then we end up in a

configuration where all pi with i ≤ m are holding ti−1 and need ti to advance,
while all p′i are holding t′i and need t′i+1 to advance. As tj ∈ {t′1, . . . , t

′
n}, all

those processes are blocked, and in particular t = t0 is held by a process which
will never release it.

As p has a reachable transition taking t, we can define wp as a short-
est run that ends in a state where some outgoing transitions takes a lock of
{t0, . . . , tm, t′1, . . . , t

′
n}. By minimality this run can be executed, as all other

locks are free. By exclusiveness, it reaches a state where all transitions take the
same non-free lock.

By Lemma 2 we can extend this run into a process-fair one, whose projection
on p can only be wp, as p will never be able to advance further.

Case 2: Now suppose there is no j such that w′
j has a weak pattern, then as

we took all w′
j with weak patterns whenever possible, it means there is no local

run with a weak pattern witnessing any of the t′j
p′

j

−→ t′j+1. We can then apply

Lemma 3 to show that the reverse cycle t′1 = t′n+1

p′

n−→ t′n · · ·
p′

1−→ t′1 exists in G
and all its edges are witnessed by runs with weak patterns. Hence we can apply
the arguments from the previous case using this cycle to conclude.

Lemma 5. If p has a reachable transition acquiring some lock t and there is a
path in G from t to some t′ such that there is a process q with an infinite local
run wq acquiring t′ and never releasing it (i.e., such that t′ ∈ Owns(wq)), then
there is a process-fair global run with a finite projection on p.

Proof. Let t = t0
p1
−→ t1

p2
−→ · · ·

pk−→ tk = t′ be the shortest path from t to t′.
Let wp be a local run of p acquiring t at some point, either infinite or leading
to a state with no outgoing transition. For each 1 ≤ i ≤ k we select a local

run wi of pi witnessing ti−1
pi
−→ ti. Furthermore we select those wi with weak

patterns whenever possible. Let tq be the other lock used by q besides t′, and
let wq be an infinite run of q in which t′ is eventually taken and never released.
We can decompose wq as uqvq where uq is the largest neutral prefix of wq. We
distinguish several cases:

Model-checking LSS 17

Case 1: tq /∈ {t0, . . . , tk}, or tq is not used in vq. Then we can execute uq,
leaving all locks free, then w1 · · ·wk, which can be done as the execution of
w1 · · ·wi leaves ti, . . . , tk free and thus wi+1 can be executed. Let vq = v′qv

′′
q with

v′q a prefix of vq large enough so that t′ is held by q and never released later.
Then as no ti is used in vq, we can execute v′q. Let w be the run constructed
so far. Then by Lemma 2 we can construct a process-fair run w′ starting in
the last configuration of w whose projection on q is a prefix of v′′q (thus tk is
never released and thus neither are t0, . . . , tk−1) and whose projection on p is a
prefix of wp (and thus finite as wp tries to acquire t, which is never free). As a
consequence, ww′ is a process-fair run whose projection on p is finite.

Case 2: tq = tj for some 0 ≤ j ≤ k and wq acquires tj at some point and never
releases it. Then we apply the same reasoning as in the previous case for the

path t = t0
p1
−→ · · ·

pj

−→ tj .

Case 3: tq = tj for some 0 ≤ j ≤ k and tj is used in vq but not kept indefinitely.

Subcase 3.1: there is an edge t′
q
−→ tj . Then we have a path from t to a cycle

tj
pj+1

−−−→ · · ·
pk−→ t′

q
−→ tj . Hence by Lemma 4, there is a process-fair global run

with a finite projection on p.

Subcase 3.2: One of the runs wi has a weak pattern {ti−1}. We decompose wi

as uivi with ui its largest neutral prefix. Then we execute ui, then wi+1 · · ·wk.
After that we execute a prefix w′

q of wq such that at the end q holds only t′,
and does not release it later. This prefix exists as q never keeps tj indefinitely
in wq. We decompose wq as w′

qw
′′
q . Then we execute w1 · · ·wi−1w

′
i. All those

runs can be executed as before executing each wi′ both locks of pi′ are free, and
before executing vi, ti−1 is free, which is all that is needed to execute vi as wi

has a weak pattern. Let w be the run constructed so far. Then by Lemma 2
we can construct a process-fair run from the configuration reached by w whose
projection on q is a prefix of w′′

q and whose projection on p is a prefix of wp. As
a consequence, t′ = tk is never released in w′′

q and thus neither are t0, . . . , tk−1.
As wp tries to take t = t0 at some point, its prefix executed in w′ is finite. Hence
ww′ is a process-fair run with a finite projection on p.

Subcase 3.3: There is no edge t′
q
−→ tj and all wi have strong patterns. When

executing the vq part of wq, q holds a lock at all times, and holds tj at some
point and t′ at some point, hence it has to have both at the same time at some
moment. Hence there is a moment at which q holds one of the locks and is about
to get the other. As the system is exclusive, it means all its available transitions

take that lock. Hence there is an edge t′
q
−→ tj or tj

q
−→ t′ in the graph. As we

assumed that there is no edge t′
q
−→ tj , there is one tj

q
−→ t′. Furthermore, as we

selected the wi so that they had weak patterns whenever possible, it means that

for all i there is no run with a weak pattern witnessing ti−1
pi
−→ ti. By Lemma 3

this means that there are edges tk
pk−→ tk−1

pk−1

−−−→ · · ·
pj+1

−−−→ tj . With the edge

18 Corto Mascle

t′
q
−→ tj , we obtain a cycle in G with a path from t to it. By Lemma 4, there is

a process-fair global run with a finite projection on p.
This concludes our case distinction, proving the lemma.

Lemma 6. If p has a reachable transition acquiring some lock t and there is a
path in G from t to some t′ such that there is a process q with a local run wq with
t′ ∈ Owns(wq) and going to a state with no outgoing transitions, then there is
a process-fair global run with a finite projection on p.

Proof. Let sq be the state reached by wq , we add a self-loop on it with a fresh
letter #. As there are no other outgoing transitions from sq this does not break
the exclusiveness. It does not change G either. Then wq#

ω is an infinite run
acquiring t′ and never releasing it.

Hence by Lemma 5, there is a process-fair run w in this new system whose
projection on p is finite. Let h be the morphism such that h(#) = ε and h(a) = a
for all other letters a. Then h(w) is a process-fair run of the original system: it
is a run as # does not change the configuration, meaning that all actions of
h(w) can be executed. For the same reason, if a process p′ other than q only has
finitely many actions in h(w), then the same is true in w, thus there is a point
after which no configuration allows p′ to move in w, and thus in h(w) as well.
As for q, either it only executes # from some point on, meaning it has reached
sq and will be immobilised in h(w), or it never executes any #, in which case
h(w) = w and it follows the same configurations in both.

Lemma 7. There is a process-fair run whose projection on p is finite if and only
if there is a local run wp of p leading to a state where all outgoing transitions
take some lock t and either

1. p has a local run leading to a state with no outgoing transitions.
2. or there is a path from t to a cycle in G
3. or there is a path in G from t to some lock t′ and there is a process q with a

local run wq with an infinitary pattern with t′ ∈ Owns(wq).
4. or there is a path in G from t to some lock t′ and there is a process q with a

local run wq such that t′ ∈ Owns(wq) and leading to a state with no outgoing
transitions.

Proof. We start with the left-to-right implication: Say there is a run w whose
projection on p is finite. For each process p′ ∈ Proc let wp′ be its local run.

Then wp has to end in a state where all available transitions acquire a lock t.
If there are no transitions at all, condition 1 is satisfied. If there is at least one
such transition, then t is held forever by some other process p1.

We construct a path t = t0
p0
−→ t1

p1
−→ · · · in G so that all ti are held indefi-

nitely by some process after some point in the run. Say we already constructed
those up to i.

There is a process pi holding ti indefinitely. If wpi
is infinite, then condition 3

is satisfied. Otherwise, wpi
is finite, and with a finitary pattern such that ti ∈

Owns(wpi
).

Model-checking LSS 19

If this local run ends up in a state with no outgoing transition then condition 2
is satisfied, otherwise it must have no choice but to acquire some lock t′i+1. Hence

we construct an infinite path t′0
p′

0−→ t′1
p′

1−→ · · · in G.
The set of processes is finite, hence there exist i < j such that ti = tj ,

meaning we have reached a cycle. Thus condition 4 is satisfied.
For the other direction, suppose there exists t as in the statement of the

lemma, so that one of the conditions is satisfied.
If condition 1 is satisfied, then we have a finite run wp leading to a state

with no outgoing transition. We execute it and then prolong it into a global
process-fair run by choosing a process uniformly at random and executing one
of its available actions if there is any (similarly to the proof of 2). We obtain
a process-fair run in which p only has finitely many actions. If condition 2 is
satisfied then we have the result by Lemma 4. If condition 3 is satisfied then we
have the result by Lemma 6. If condition 4 is satisfied then we have the result
by Lemma 5.

To conclude the proof of Proposition 2, by Lemma 7, we only have to check
the four conditions listed in its statement. Here is our algorithm:

We start by looking, in the transition system of process p, for a reachable
local state with no outgoing transition. If there is one, we accept.

Then we compute all pairs (q, t) such that either there is an infinite run of
process q keeping t indefinitely from some point on or there is a run wq with
t ∈ Owns(wq) leading to a state with no outgoing transitions. As our system is
sound, the set of locks a process has is determined by its state. Let ownsp be the
function described in Definition 2. Then we compute all pairs (t, t′) such that
some process p′ has a reachable state s with ownsp′(s) = {t} and all outgoing
transitions of s acquiring t′. We obtain the edges of G.

For both locks of p′, we check that there is a reachable transition acquiring
it, and there is a path in G to either a cycle or to a t from one of the pairs (q, t)
computed above. If it is the case for one of them, we accept, otherwise we reject.
This can all be done in polynomial time, proving the proposition.

Proposition 2. The process deadlock problem is in Ptime for sound exclusive
2LSS.

4.2 NP-hardness for general 2LSS

By contrast, when we lift the exclusive requirement, the problem becomes NP-
hard (and NP-complete, as we will see later).

Proposition 3. The process deadlock problem is NP-hard for sound 2LSS.

Proof. We reduce from the 3SAT problem. We use a set of variables x1, . . . , xn.
Let ϕ =

∧m
i=1 Ci with for each i, Ci = ℓ1i ∨ℓ

2
i ∨ℓ

3
i with ℓji ∈ {xk,¬xk | 1 ≤ k ≤ n}.

We construct a system with processes Proc = {p, p′} ∪ {pCi | 1 ≤ i ≤ m} ∪
{pℓi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3} ∪ {pxk | 1 ≤ k ≤ n}. We also use locks T =

20 Corto Mascle

1 2 3

p
x
k

p
ℓ
i,j

p
C
i

p
′p

get
t

get
t(Ci) get

t′

get
t(xk)

get
t(¬xk)

get
t

relt

get
t′

relt′

get
t(Ci)

relt(Ci)

get
t(ℓi,j)

relt(ℓi,j)

Fig. 3. Processes for the reduction in Proposition 3

{t, t′} ∪ {t(Ci) | 1 ≤ i ≤ m} ∪ {t(xk), t(¬xk) | 1 ≤ k ≤ n}. The transition
systems of these process are described in Figure 3.

In order to block process p we need to block it in its first state by having an-
other process keep t forever. As a matter of fact, the only other process accessing
t is p′. As a consequence, a process-fair run blocks p if and only if p′ eventually
keeps t forever.

Consider such a run w. Then eventually p′ has to stop visiting its state 1.
Furthermore, as w is process-fair, p′ can never stay indefinitely in one of the
other two states as it is always possible to execute a rel action. Hence p′ goes
through states 2 and 3 infinitely many times, meaning it takes and releases t′

infinitely often.

This implies that none of the pCi keep t′ indefinitely, which is only possible
if all the t(Ci) are taken and never released by other processes (if some t(Ci) is
free infinitely often, as w is process-fair pCi has to take t(Ci) at some point, and
then t′ cannot be free infinitely often as pCi would have to take it eventually).

As a consequence, for each Ci there has to be a ℓji such that pℓi,j keeps t(Ci)
forever, which is only possible if t(ℓi,j) is free infinitely often.

This means that the process pxk (with xk the variable appearing in ℓi,j) must

have taken the lock associated with the negation of ℓji (it cannot stay in its initial

state as the run is process-fair and ℓji is free infinitely often).

In conclusion, exactly one of t(xk), t(¬xk) is free infinitely often for each k,
and for each clause Ci there is a literal in Ci whose lock is free infinitely often.
Thus the valuation mapping each xk to ⊤ if xk is free infinitely often and ⊥
otherwise satisfies ϕ.

Now suppose ϕ is satisfied by some valuation ν. We construct the following
run: First of all for all k process pxk takes t(¬xk) if ν(xk) = ⊤ and t(xk) otherwise.

Then for each i we select some ji such that ν satisfies ℓji and have process pℓi,ji
take Ci. Finally, p′ takes t.

Model-checking LSS 21

We then repeat the following steps indefinitely: one by one each pℓi,ji takes

t(ℓji) and releases it, then p′ takes and releases t′. This is all possible as all

t(ℓjii) are free (those ℓji are satisfied by ν hence the corresponding pxk took their
negations) and so is t′ (none of the pCi ever moves thus they do not take t′).

This run is process-fair as the processes that are eventually blocked are the
pxk (which end up in states with no outgoing transitions), the pCi (which need Ci

to advance, but those locks are never released) and p (which needs t to move on,
but t is kept forever by p′). This concludes our reduction.

5 Regular objectives

5.1 The problem is Pspace-complete in general

In order to justify our approach, we prove that the general verification of LSS
against regular objectives is Pspace-complete, even with strong restrictions on
the system.

Proposition 4. The regular verification problem is Pspace-complete for LSS
in general. Pspace-hardness already holds for the process deadlock problem for
sound exclusive LSS even with a fixed number of locks per process.

The Pspace upper bound is easy to obtain: It suffices to guess a state sp
in each Ap and s′p in each Bp, and then guess a sequence of letters in Σ while
keeping track of the states reached by that sequence in the Ap and Bp.

If we reach a configuration with each Ap in state sp and each Bp in s′p, we start
memorising the set of visited states in each Bp. If we reach that configuration
again, we stop and accept if and only if the set of visited states in the Bp satisfies
ϕ. This comes down to guessing an ultimately periodic run in the global system
and checking that it satisfies the objective.

The difficulty is to obtain the Pspace-hardness with a fixed number of locks
per process. To do so we reduce the emptiness problem for the intersection of a
set of deterministic automata.

Without loss of generality we will assume that there are at least two au-
tomata, that they are all over alphabet {0, 1}, and that their languages are all
included in 11(00+01)∗: we can always apply a small transformation to each au-
tomaton so that, if its language was L, it becomes 11h(L) with h the morphism
mapping 0 to 00 and 1 to 01. The intersection of those languages is empty if and
only if the intersection of the original languages was empty.

Let A1, · · · ,An (with n ≥ 2) be automata, with, for each 1 ≤ i ≤ n, Ai =
(Si, {0, 1}, δi, initi, Fi). We construct a sound exclusive LSS S as follows:

For each 1 ≤ i ≤ n we have a process pi which is in charge of simulating
Ai. The set of locks is T = {0i, 1i, keyi | 1 ≤ i ≤ n}. For all i, pi accesses locks
0i, 1i, keyi, as well as 0i+1, 1i+1, keyi+1 if i ≤ n − 1 and 01, 11 if i = n. Thus a
process uses at most 6 locks in total.

For all 1 ≤ i ≤ n and t accessed by pi, we have two actions getit and relit,
with which pi acquires and releases lock t, as well as actions nopi and endi with
no effect on locks.

22 Corto Mascle

In the proof the following local sequences will be important:

send(0) = reln0nget
n
00
reln1nget

n
10
reln00get

n
0n
reln10get

n
1n

reci(0) = nopigeti0i+1
reli0iget

i
1i+1

reli1iget
i
0i
reli0i+1

geti1irel
i
1i+1

send(1) and reci(1) are defined analogously, by replacing 0 by 1 and 1 by
0 everywhere.

The following global sequences will be useful as well:

acqs(0) = get
n−1
0n

rel
n−1
0n−1

· · · get101rel
1
00

rels(0) = get100rel
1
01 · · · get

n−1
0n−1

rel
n−1
0n

nop = nop1 · · · nopn−1

acqs(1) and rels(1) are defined analogously, by replacing 0 by 1 and 1 by
0 everywhere.

The transition system of each process pi is designed as follows: We start with
Ai, and we replace every transition labelled 0 with a sequence of transitions
labelled by actions of send(0) if i = n, and reci(0) if 1 ≤ i ≤ n− 1 (there is at
least one such i as n ≥ 2).

Furthermore we add a few transitions so that each pi with i ≤ n− 1 executes
starti = getikeyi+1

geti0iget
i
1i
getikeyi

relikeyi+1
before entering the initial state

of Ai. If i = n that sequence is startn = getnan
getnbnget

n
keyn

. We also add a

transition reading endi from all states of Fi to a state stopi with no outgoing
transition.

The objective is that the action endi is executed for all 1 ≤ i ≤ n.
One direction is easy. Say there is a word u = b1b2 · · · bm in the intersection

of the languages of the Ai. Then we start by executing all starti sequences for
all i in increasing order, and then, for each 1 ≤ j ≤ m (in increasing order), we
execute the sequence of operations

seq(bj) =rel
n
(bj)n

nop acqs(bj)get
n
(bj)0

rel
n
(1−bj)n

acqs(1− bj)get
n
(1−bj)0

rel
n
(bj)0

rels(bj)

getn(bj)nrel
n
(1−bj)0

rels(1 − bj)get
n
(1−bj)n

This run projects on pi as startireci(b1)reci(b2) · · ·rec(bm) if i ≤ n − 1
and startisend(b1)send(b2) · · · send(bm) if i = n. As u is in the language of
Ai, pi can execute this run locally. It can be easily checked that all operations
in that run are valid in the current configuration, hence this sequence can be
executed.

Model-checking LSS 23

As u is accepted by all Ai, after executing the sequence above each process
pi ends up in a state of Fi, and thus they can all execute endi one after the
other.

Conversely, suppose there is some run w whose local projection w|p on each
process p is ends with endi. Each w|pi

must start with the execution of starti.
We prove the following lemma:

Lemma 8. For all j ∈ N, let wj be the shortest prefix of w whose projection on
pn is startnsend(b1) · · · send(bj). Then the projection of wj on every other pi
has reci(b1) · · ·reci(bj) as a suffix.

Proof. We prove this by induction on j. For j = 0 it is trivial. Let j ∈ N, suppose
the claim is true for j, we show it for j + 1.

First of all note that for all i ≥ 1, if pi has finished executing starti then
it holds ki and will never release it, hence pi−1 either has executed starti−1 in
full or has not begun executing it. In the second case, pi−1 will never be able
to advance, which is impossible as w|p is not empty. As a result, after pn has
executed startn, all other pi must have executed starti.

Another important remark is that after executing starti, all pi alternate
between a get and a rel no matter which local run they execute. While pn
starts with a rel, all other processes start with a get. Therefore pn always
holds either 2 or 3 locks, while all others always hold either 3 or 4. There are
n processes and 3n locks in total, hence at all times the global configuration is
such that either all locks are taken and the next operation of some process p is
rel (and get for all others) or one lock is free and all processes have a get as
their next operation.

Now say process pn has started executing send(bj+1) by releasing (bj+1)n.
This means some other process must have taken (bj+1)n, which can only be
pn−1. The only possibility is that pn−1 then releases (bj+1)n−1, which can only
be taken by pn−2, ... We must end up executing acqs(bj+1), which ends with
(bj+1)0 free, which can only be taken by pn.

By continuing this reasoning we conclude that wj+1 = wjseq(bj+1), proving
the lemma.

As all pi execute endi in w, in particular w|pn
ends with endn, hence it is

necessarily of the form startnsend(b1) · · · send(bm)endn. Let w′ be w where
all endi have been erased. The lemma above allows us to conclude that for all i,
w′|pi

has reci(b1) · · ·reci(bm) as a suffix.
Recall that the languages of all Ai are included in 11(00+01)∗. Moreover, we

know that b1 · · · bm is in the language of An, hence b1 = b2 = 1. Furthermore, all
w′|pi

(i < n) are of the form startireci(x1) · · ·reci(xr) with x1 · · ·xr in the
language of Ai. As the only moment a factor 11 can appear in a word of those
languages is at the beginning, for w′|pi

to have reci(b1) · · ·reci(bm) as a suffix,
we must have w′|pi

= startireci(b1) · · ·reci(bm).
As a consequence, for all i we have w|pi

= startireci(b1) · · ·reci(bm)endi

and thus b1 · · · bm must be accepted by all Ai.

24 Corto Mascle

We have proven that this system had a run in which each pi reads endi if
and only if there is a word accepted by all Ai.

As that condition is easily expressible as a regular objective, we obtain the
Pspace-hardness of the regular verification problem for sound exclusive LSS
with 6 locks per process. However, our goal was to prove the Pspace-hardness
of the process deadlock problem for sound exclusive LSS.

To do so, we add a process q and locks ℓi for 1 ≤ i ≤ n + 1 so that the
transition system of q simply takes ℓn and then goes to a state with a self-loop
executing nop. We also add, for each 1 ≤ i ≤ n, a sequence of transitions from
stopi which take ℓi, then ℓi−1 and release ℓi if i ≥ 2, and simply take ℓi if i = 1,
to end up in a state with no outgoing transition.

We show that there is a process-fair run with a finite projection on q if and
only if there is one in the previous LSS such that each pi executes endi.

If the latter is true, then we just take the same run and prolong it so that
each pi takes ℓi. Then all ℓi are taken, and all processes need some ℓi to advance,
we have reached a global deadlock (in particular the run is process-fair, and its
projection on q is finite).

Conversely, suppose we have a process-fair run in the new LSS with a finite
projection on q. Then q must be blocked, which is only possible if ℓn is held
forever by pn, which in turn is only possible if ℓn−1 is held forever by pn−1...
We conclude that all pi must be holding ℓi forever from some point on, and thus
that they all read endi.

We project that run to erase all actions getting an ℓi. We obtain a run of the
previous system in which every process has executed endi.

As a result, the new LSS has a process-fair run in which q is blocked if and
only if the former LSS has a run in which every pi has executed endi, if and only
if the Ai recognise a common word.

As a result, the process deadlock problem is Pspace-complete for sound
exclusive LSS with 8 locks per process.

5.2 ...but NP-complete for 2LSS

Then we prove that the complexity falls to NP when we demand that each
process uses at most two locks.

Proposition 5. The regular verification problem is NP-complete for 2LSS (the
lower bound holds even for sound exclusive 2LSS).

Proof. We start with the upper bound. Let S = ((Ap)p∈Proc, T, op) be a 2LSS
and ((Bp)p∈Proc , ϕ) a regular objective. Our NP algorithm goes as follows:
we guess a pattern patp for each process p, as well as a valuation ν of the
(infp,s)p∈Proc,s∈Sp

. For each p let Ownsp be the set of locks kept indefinitely by
a run respecting patp.

Then we check that those patterns respect the conditions of Proposition 1
and that this valuation satisfies ϕ (otherwise we stop). We then equip each Bp

with the acceptance condition
∧

ν(infp,s)=⊤ infs ∧
∧

ν(infp,s)=⊥ ¬infs

Model-checking LSS 25

We add a self-loop labelled � on each state in Ap whose outgoing transitions
all acquire a lock of

⋃

p∈Proc Ownsp.
Then, for each p we construct the product C of Ap, Bp and Apatp

(from
Lemma 1) to obtain an ELA recognising runs of p that match pattern patp and
are in the language of Bp. We guess an ultimately periodic run of the form uvω

with u and v of polynomial size in the number of states of C and check that
it is accepting (otherwise we stop). It is well-known that an ELA either has an
empty language or accepts a run of that form. Then we accept.

We accept if and only if there is a valuation ν satisfying ϕ and a family of
patterns (patp)p∈Proc such that there exist local runs (wp)p∈Proc of the processes
matching those patterns and producing words whose runs in the (Bp)p∈Proc

match ν, and such that the finite ones end in states from which they can only
take locks of Ownsp. By Proposition 1, this is true if and only if there is a global
run of the system satisfying the given objective. Hence the problem is in NP.

For the lower bound, we could easily translate a SAT formula into a regular
objective, with one process for each variable choosing to set it to ⊤ or ⊥.

However, we want to show that the NP complexity lies already in the model
with no need for complicated objectives. By Proposition 3, we know that the
existence of a process-fair run blocking a given process p is NP-hard for sound
2LSS. However this is not the case if we are restricted to exclusive 2LSS.

In order to prove the lower bound for exclusive 2LSS we adapt the reduction
from the proof of Proposition 3. Note that the only non-exclusive processes in
Figure 3 are p′ and pℓi,j . In p′ we add an extra state 4 and replace the transition
from 2 to 3 with a nop transition from 2 to 4 and a gett′ transition from 4 to
3. What may then happen is that p′ gets stuck in 4 because t′ is taken by some
other process forever, which could not happen before as p′ always had the option
of releasing a lock in 2. To overcome this, we add to the objective that p′ should
have an infinite run. We do the same thing for pℓi,j , by decomposing the gett(ℓj

i
)

into two transitions and adding the requirement that all pℓi,j should run forever.
The proof is then exactly the same as the one for Proposition 3.

6 Nested locks

In this section we address the verification problem for systems with a restricted
lock acquisition policy. We require that each process acquires and releases locks
as if they were stored in a stack. This is a classical restriction, as this way of
managing locks is considered to be sound and suitable in many contexts.

An LSS is nested if all its runs are such that a process can only release
the lock it acquired the latest among the ones it holds. In [2] (Theorem 5.5)
the authors considered a type of system which can be translated to our sound
nested exclusive LSS and proved an NP upper bound on the complexity of
the following problem: Is there a reachable configuration where there are some
processes p1, . . . , pk ∈ Proc and locks t1, . . . , tk+1 = t1 ∈ T with each pi holding
lock ti and needing to get ti+1 to keep running? We will call such configurations
circular deadlocks. They leave the question of a matching lower bound open.

26 Corto Mascle

We considerably generalise their result by proving an NP upper bound on
the regular verification problem for nested LSS (note that the problem above can
be solved by guessing a configuration with such a circular deadlock and using
our NP algorithm to check reachability of that configuration). We then prove
an NP lower bound on the process deadlock problem for sound nested exclusive
LSS, thereby adding a matching NP lower bound to their result.

This shows that the nested requirement significantly improves the complex-
ity of the regular verification problem. On the other hand, the NP-hardness is
difficult to avoid: it holds even for a very restricted class of systems and for very
simple objectives.

Lemma 9. Every local run in a nested LSS can be decomposed as

w = w0a1w1a2 · · ·wk−1akwkwk+1 · · ·

where a1, . . . , ak are the actions getting a lock that is not released later in w.
Furthermore, all wi are neutral. Finally, for all i ≥ k + 1, all locks acquired

in wi are acquired infinitely many times in w. If w is finite, all wi are empty for
i ≥ k + 1. We call this decomposition the stair decomposition of w.

Proof. Let w be a local run of some process p. We start by decomposing it as

w = w0a1w1a2 · · ·wk−1akw∞

with a1, . . . , ak the actions getting a lock that is not released later in the run.
For all i let ti be the lock taken by ai, namely op(ai) = getti .

We check that all w0, . . . , wk−1 are neutral. Consider some wi. If a lock t is
taken in wi then it must be released later in the run because ai+1 is the next
operation that takes a lock and does not release it. But because of the nesting
discipline t cannot be released after ai+1. So it must be released in wi.

Now we look at w∞. Every lock acquired in it must be released eventually.
Thus if the run is finite we can set wk = w∞ and wi = ε for all i ≥ k + 1.

If the run is infinite then we proceed as follows: Before executing w∞, p holds
t1, . . . , tk. We construct a sequence of neutral runs w′

j such that w∞ = w′
1w

′
2 · · · .

Say we constructed w′
1 · · ·w

′
j . As they are all neutral, after executing them p

holds t1, . . . , tk. The next action a in w∞ cannot release a lock as none of those
locks are ever released. If a does not get a lock then we can simply set wj+1 = a.
If a acquires lock t then let wj+1 be the infix of w∞ starting with a and ending
with the next action releasing t. This run is neutral as the system is nested. Then
let j be such that w′

1 · · ·w
′
j contains all gett operations with t acquired finitely

many times in w∞. We set wk = w′
1 · · ·w

′
j and for all i ≥ k + 1, wi = w′

j−k+i.
We obtain our decomposition.

We now define patterns of local runs in a similar manner as in Section 3.

Definition 13. Consider a (finite or infinite) local run w of process p, and its
stair decomposition w = w0a1 · · ·wk−1akwkwk+1 · · · . For all i let ti be the lock
acquired by ai.

Model-checking LSS 27

We say that w matches a stair pattern (Owns
N (w),≤w , Inf

N (w)) when
Owns

N (w) = {t1, . . . , tk}, the set of locks acquired infinitely many times is
included in Inf

N (w), and ≤w
p is a total order on T satisfying two conditions:

– if t is acquired finitely many times and t′ infinitely many times then t ≤w
p t′,

– if t = ti for some i and t′ is acquired at some point after ai then t ≤w
p t′.

The N in exponent above Owns
N
p and Inf

N
p is for nested, to avoid confusion

with the notations defined in Section 3: while Owns
N and Owns correspond to

the same idea, Inf
N and Inf are two different things.

Note that unlike the patterns defined for 2LSS, here a run may have several
different patterns. We could define unique patterns but this would somehow
make the statement of Lemma 10 and the proof of Lemma 11 more complicated.

Our next lemma characterises when local runs can be combined into a pro-
cess-fair global one. Once again the characterisation uses only patterns and last
states of the local runs.

Lemma 10. Consider a family of (finite or infinite) local runs (wp)p∈Proc of a
nested LSS. For each p ∈ Proc we consider a stair decomposition of wp:

wp = wp,0ap,1 · · ·wp,kp−1ap,kp
wp,kp

wp,kp+1 · · ·

and for each ap,i let tp,i be the lock such that op(ap,i) = gettp,i .

Runs (wp)p∈Proc can be scheduled into a process-fair global run if and only if

there exist for each p a stair pattern (Owns
N
p ,≤p, Inf

N
p) that wp matches and

the following conditions are satisfied.

1. The Owns
N
p sets are pairwise disjoint.

2. All ≤p orders are the same.
3. For all p, if wp is finite then it leads to a state where all outgoing transitions

acquire a lock from
⋃

p∈Proc Owns
N
p .

4. The set
⋃

p∈Proc Owns
N
p is disjoint from

⋃

p∈Proc Inf
N
p .

Proof. Suppose we have a process-fair global run w whose local projections are
the (wp)p∈Proc. For each p let Owns

N
p be the set of locks kept indefinitely in wp

and Inf
N
p the set of locks acquired infinitely often in wp. Let ≤ be a total order

on locks such that for all t, t′ ∈ T , if t is acquired finitely many times in w and
there is an operation on t′ after the last operation on t then t ≤ t′. In particular,
a lock acquired infinitely often is always greater than one acquired finitely many
times. Further, for all p, i the action ap,i acquires tp,i, which is not released later.
Thus ap,i is the last action with an operation on tp,i in w. Hence if another lock
t is used after ap,i in wp, it is also used after ap,i in w, and therefore tp,i ≤ t.

As a result, (Owns
N
p ,≤, Inf

N
p) is a pattern of wp for all p, and 2 is immediately

satisfied.
As each p eventually holds Owns

N
p and keeps those locks forever, the Owns

N
p

have to be disjoint, thus condition 1 is satisfied.

28 Corto Mascle

For condition 3, we use the fact that w is process-fair. For all p, if wp is finite
then it leads to a state where after some point in the run none of the outgoing
transitions can be executed. Hence all these transitions acquire a lock that is
never released after some point. This is the case for locks of

⋃

p∈Proc Owns
N
p

but not for the others, which are free infinitely often. Hence condition 3 holds.

Finally, as all locks from
⋃

p∈Proc Owns
N
p are eventually never free while the

locks from
⋃

p∈Proc Inf
N
p are free infinitely often, the two sets are necessarily

disjoint, proving condition 4.

For the other implication, suppose that we have patterns (Owns
N
p ,≤p, Inf

N
p)

such that all conditions are satisfied. Let ≤ be the total order on locks common
to all patterns, which exists by condition 2. We start by executing one by one
for each run wp its prefix wp,0, leaving all locks free are the wp,0 are all neutral.

We use the notation TO for the set
⋃

p∈Proc Owns
N
p . We index the locks of

TO so that TO = {t1, . . . , tm} and t1 ≤ t2 ≤ · · · ≤ tm. For each ti ∈ TO there
is a pair (pi, ji) such that op(api,ji) = getti . Furthermore that pair is unique
as a process p cannot have ap,j take ti for two different j (by definition of stair

decomposition) and as the Owns
N
p are disjoint (by condition 1). We execute, for

all ti ∈ TO, in increasing order on i, api,jiwpi,ji .

At first all locks are free. Then, for each i, just before we execute api,jiwpi,ji ,
the locks that are not free are exactly {ti′ | i′ ≤ i − 1}. Hence for every lock ti′
that is not free, we have ti′ ≤ ti and ti′ 6= ti.

By definition of ≤p, all locks t′ acquired in api,jiwpi,ji are such that ti ≤p t′,
hence ti ≤ t′ by condition 2. As a result, they are all free just before we execute
api,jiwpi,ji . After we execute it, the set of non-free locks becomes {ti′ | i′ ≤ i}.

The projection of the resulting run on each p is wp,0ap,1 · · ·wp,kp−1ap,kp
wp,kp

.

All that is left to do is executing the wp,i for i ≥ kp + 1 for each p. They
only contain operations on locks that are acquired infinitely many times which
are thus in Inf

N
p as wp matches pattern (Owns

N
p ,≤p, Inf

N
p), and therefore free

by condition 4. As furthermore all wp,i are neutral by definition of stair decom-
position, we can execute the next wp,i for each p again and again indefinitely, to
obtain an infinite global run of the system.

This run is furthermore process-fair as the finite wp lead to states whose
outgoing transitions acquire locks of TO, which are eventually all taken forever.
Hence those processes do not have an available action infinitely often.

Before we can present our NP algorithm, we need one last technical lemma to
show that we can recognise runs with a given pattern using a small automaton.

Lemma 11. Given a process p and a stair pattern pat we can construct an

ELA Ap
pat such that for all nested local run wp, w

�
p is accepted if and only if wp

matches stair pattern pat. The automaton Ap
pat has at most (|Tp| + 2)2 states

and a formula of constant size for the accepting condition.

Proof. Let pat = (Owns
N
p ,≤p, Inf

N
p). We set Owns

N
p = {t1, . . . , tk} so that

t1 ≤p · · · ≤p tk.

Model-checking LSS 29

We define the automaton Ap
pat = (Sp

pat, Σp ∪ {�}, ∆p
pat, init

p
pat, ϕ

p
pat) as

follows: If there exist t, t′ such that t ∈ Inf
N
p , t′ /∈ Inf

N
p and t ≤p t′ then no run

can match this stair pattern, hence we simply set Ap
pat as an automaton with

an empty language. From now on we will assume that it is not the case.
The states of the automaton are Sp

pat = {0, . . . , k,∞} × (Tp ∪ {neutral}),
with initppat = (0, neutral).

Intuition The first component of each state gives an index i such that the run
read so far is of the form w0a1w1 · · · aiwi with wj neutral for all j < i, and for
all j ≤ i op(aj) = gettj and all locks t′ used after aj are such that tj ≤p t′. If

the first component is ∞ it means we will only use locks of Inf
N
p in the future.

The second component of a state (i, x) indicates which lock apart from
{t1, . . . , ti} we acquired earliest among the ones we own. If we released all locks
acquired since we took ti, then the second component is neutral. We do not need
to keep track of all locks acquired as we are only interested in nested runs: If
we are in state (i, neutral) and acquire some lock t, we go to state (i, t) to wait
for it to be released: if we stay in state (i, t) indefinitely the run is not accepted,
otherwise t is released we know that if the run we read is nested then all locks
taken since we took t have been released before.

Formal proof: For each action a ∈ Σp ∪ {�} and state s ∈ Sp
pat we have the

following transitions:

– If s = (i, neutral) with i < k then:
• If op(a) = getti+1

then ∆p
pat(s, a) = {(i+ 1, neutral), (i, ti+1)}

• If op(a) = gett with ti ≤p t then ∆p
pat(s, a) = {(i, t)}

– If s = (k, neutral) then:
• If op(a) = gett with tk ≤ t then ∆p

pat(s, a) = {(k, t)}
– If s = (i, t) with i ≤ k then:

• If op(a) = relt then ∆p
pat(s, a) = {(i, neutral)}

• If op(a) = gett′ or relt′ with ti ≤p t′ and t′ 6= ti then ∆p
pat(s, a) = {s}

– If s = (∞, neutral) then:
• If op(a) = gett with t ∈ Inf

N
p then ∆p

pat(s, a) = {(∞, t)}
– If s = (∞, t) then:

• If op(a) = relt then ∆p
pat(s, a) = {(∞, neutral)}

• If op(a) = gett′ or relt′ with t′ ∈ Inf
N
p then ∆p

pat(s, a) = {s}
– If op(a) = nop then ∆p

pat(s, a) = {s} for all s.
– If a = � then ∆p

pat((k, neutral), a) = ∆p
pat((∞, neutral), a) = {(∞, neutral)}

– Otherwise ∆p
pat(s, a) = ∅.

– We add an ε-transition from (k, neutral) to (∞, neutral). It can be elimi-
nated by adding a few transitions to the automaton, but we allow it as it
simplifies the proof.

The acceptance condition ϕpat is simply inf(∞,neutral).
Let w be a local run of p matching the given stair pattern pat, and let

w = w0a1 · · ·wk−1akwkwk+1 · · · be its stair decomposition. For all i < k there is

30 Corto Mascle

a path in the automaton reading wp,i from state (i, neutral) to itself: every letter
acquiring some t (thus getting to state (i, t)) is later followed by one releasing it.
Letters using a lock lower than ti for ≤p cannot appear in wp,i as otherwise wp

would not match pat. Furthermore, there are no � in wp,i. As a result, when t is
eventually released we are still in state (i, t) and we go back to state (i, neutral).

As a result, the run w0a1 · · ·wk−1akwk labels a path from (0, neutral) to
(k, neutral) in the automaton. Then all letters that appear in the wi for i ≥ k
are greater than tk, otherwise wp would not match pat. If wp is finite then all
the following letters are �, and we stay in (∞, neutral) forever.

If wp is infinite then by definition of the stair decomposition all the following

letters use locks of Inf
N
p or apply nop. Then we can take the ε transition to

(∞, neutral). Each wj with j ≥ i + 1 labels a path from (∞, neutral) to itself:
all gett operations that get the run to (∞, t) are matched by a later operation
relt taking it back to (∞, neutral). In both cases the run is accepting as it visits
(∞, neutral) infinitely many times.

Now let w be a nested local run of p such that w� is accepted by Apat.
Then we consider an accepting computation of w in A and decompose w as w =
w0a1 · · ·wk−1akw∞ with ai the first letter in the run such that the computation
gets to (i, neutral) after reading the prefix w0a1 · · ·wi−1ai. By definition of the
automaton, we must have op(ai) = getti for all i, and all operations executed
after ai must be on locks greater than ti for ≤p.

We show that for all i ∈ {0, . . . , k,∞}, any nested run labelling a path from
(i, neutral) to itself must be neutral: Suppose it is not the case, let u be a nested
run that is not neutral labelling a path from (i, neutral) to itself, of minimal
size. The first operation on locks in u must be a gett, as otherwise u cannot be
read from (i, neutral). In order to go back to (i, neutral), there must be a later
operation relt in u. Hence, as u is nested, we have u = avbu′ with op(a) = gett,
op(b) = relt, v neutral, and u′ labelling a path from (i, neutral) to itself. By
minimality of u, u′ must be neutral, hence so must be u: contradiction.

All runs wi label a path from (i, neutral) to itself, thus they must be neutral.

If w is finite, then so is w∞. Furthermore w∞ is neutral as it must label a
path from (k, neutral) to itself. Thus w must match the stair pattern pat.

Otherwise, we cut w∞ in parts so that w∞ = wkwk+1 · · · with wk labelling
a path from (k, neutral) to itself and for all j ≥ k + 1, wj labelling a path from
(∞, neutral) to itself.

This decomposition exists as, for w to be accepted, w∞ must label a path
starting in (k, neutral), taking at some point the ε transition from (k, neutral)
to (∞, neutral), and then going back infinitely many times to (∞, neutral).

As each wj labels a path from either (k, neutral) or (∞, neutral) to itself,
they are all neutral. Furthermore, the wj with j ≥ k + 1 can only use locks of

Inf
N
p , as the automaton only allows those operations from states with an ∞ first

component.

As a result, w matches pattern pat.

We can finally give an NP upper bound for the problem over nested LSS.

Model-checking LSS 31

Proposition 6. The regular verification problem is decidable in NP for sound
nested LSS.

Proof. Let S = ((Ap)p∈Proc , T) be a sound nested LSS, and ((Bp)p∈Proc, ϕ) a
regular objective.

The algorithm is similar to the one for Proposition 5: we guess a pattern
patp = (Owns

N
p ,≤p, Inf

N
p) for each process p, and a valuation ν of the variables

(infp,s)p∈Proc,s∈SBp
(the variables of ϕ, see Definition 5). We check that ν satisfies

ϕ. We transform each Ap into A�
p , in which we added, on each state whose

outgoing transitions all acquire a lock from
⋃

p∈Proc Owns
N
p , a � self-loop. We

also equip each Bp with an Emerson-Lei accepting condition expressing that the
run matches ν.

We then guess, for each process p, a run in the product of Bp, Ap and Apatp

(as described in Lemma 11) that matches valuation ν. It is folklore that if an
Emerson-Lei automaton has an accepting run then it has one of the form uvω

with u and v of polynomial size in the number of states of the automaton. Thus
we can guess an accepting run within NP. An accepting run is one that respects
ν in Bp, and follows a run of Ap of pattern patp (and ends in a state with all

outgoing transitions getting a lock of
⋃

p∈Proc Owns
N
p if it is finite).

By Lemma 10, we accept if and only if there is a process-fair global run of
the LSS satisfying the objective.

We give a matching lower bound, robust to many restrictions. The reduction
also solves a question left open in [2], as explained at the beginning of the section.

Proposition 7. The process deadlock problem and the circular deadlock problem
are NP-hard for sound nested exclusive LSS.

Proof. We reduce the Independent Set Problem, in which we are given an undi-
rected graph G = (V,E) (edges are subsets of V of size 2) and an integer k and
have to determine whether there is a subset of vertices S ⊆ V such that |S| = k
and there are no edges between any two elements of S. Let n = |V |.

Let G = (V,E) be an undirected graph, and k ∈ N. We can assume that
V = {1, . . . , n} for some n ∈ N. We set E = {e1, . . . , em}, i.e., we put an
arbitrary order on edges in E. Our set of processes is Proc = {p1, . . . , pk}. For
each 1 ≤ j ≤ m we have a lock tj . We write T for the set {tj | 1 ≤ j ≤ m}.
Our set of locks is T ∪ {ℓ1, . . . , ℓk}. For each v ∈ V we write Ev for the set of
edges adjacent to v and Tv for {tj | ej ∈ Ev}. Each process pi uses locks of
T ∪ {ℓi, ℓi+1}, with the convention ℓk+1 = ℓ1.

Each process pi has n transitions from its initial state, with operation nop,
which lead to states s1, . . . , sn. From each sv a sequence of transitions (with no
choice) acquires all locks tj ∈ Tv in increasing order of indices, then acquires ℓi,
then ℓi+1, and then releases all those locks in reverse order (thus ensuring the
nested property). We end up in a state endi with a local self-loop. This system is
clearly exclusive, as the only state with several outgoing transitions is the initial
one, and none of them acquire any lock.

32 Corto Mascle

Suppose that this LSS has a run w leading to a circular deadlock. The struc-
ture of the LSS imposes that when executing w we eventually stay in the same
configuration forever, with some processes blocked because they cannot acquire
some lock and some looping indefinitely on their state endi.

Let C be that configuration. If some pi is stuck after acquiring ℓi, then it
cannot have acquired ℓi+1, as otherwise it could release all of its locks and loop
in endi. Hence some other process holds ℓi+1, and it can only be pi+1 (with
pk+1 = p1). By iterating this reasoning, we conclude that all processes pi are
blocked while holding ℓi, as they cannot acquire ℓi+1. They must be holding
disjoint sets of locks. By construction, each pi is holding ℓi, plus the locks of
some Tv, v ∈ V . Hence we have k disjoint Tv, i.e., we have a set of k vertices
whose sets of adjacent edges are disjoint, i.e., an independent set of size k.

Now suppose no pi is stuck after acquiring ℓi. Then all pi that have acquired
ℓi have reached endi, and released all their locks, thus all ℓi are free. There must
be at least one process blocked when trying to acquire an element of some Tv.
Let j be the highest index in {1, . . . ,m} such that there is a process pi blocked
because it cannot acquire tj . Then there is a process pi′ which is holding tj ,
and is itself unable to acquire some tj′ (as all locks ℓr are free). However, as all
processes acquire elements of T in increasing order of index, we must have j′ > j,
contradicting the maximality of j. Thus this case cannot happen, concluding the
first part of our reduction.

Conversely suppose we have an independent set of vertices S = {v1, . . . , vk} ⊆
V of size k. Then we construct the run w in which, one by one, each pi first goes
to svi and then acquires {ℓi} ∪ Tvi . This is possible as they all acquire disjoint
sets of locks. We end up in a configuration where each pr needs kr+1 to advance,
but cannot do so as kr+1 is held by pr+1. Hence w yields a circular deadlock
(and even a global deadlock, which shows that it is process-fair). This ends
our reduction, proving that the circular deadlock problem is NP-hard even for
nested exclusive LSS. In the LSS above, we showed that if a run yields a circular
deadlock then it yields a global deadlock. Hence we can apply the reduction
to the process deadlock problem by picking an arbitrary process pi. There is a
process-fair run with a finite projection on pi if and only if there is a solution to
the initial Independent set problem.

Remark 2. The Independent set problem is NP-hard even on graphs of degree
3 [5] (Theorem 2.6). As in the reduction above the number of locks used by each
process is bounded by the degree of the input graph, we conclude that the lower
bound still holds for systems where each process uses at most 5 locks.

7 Conclusion

We have studied the verification problem for LSS against boolean combinations
of regular local objectives. We established Pspace-completeness for the general
problem, and presented two subcases where the verification problem becomes
NP-complete: 2LSS and nested LSS, as well as a Ptime algorithm for the process

Model-checking LSS 33

deadlock problem for exclusive 2LSS. The NP and Ptime upper bounds use as
their main ingredient the characterisations of whether local runs can be scheduled
into global ones through patterns. All lower bounds are robust, as they hold with
bounds on the number of locks per process and very simple objectives.

Concerning future work, most of our results can easily be extended to the
case when processes are pushdown systems (except for the general case, which
is undecidable instead of Pspace-complete, see [9], Theorem 8). Another easy
extension is to replace nested with bounded lock chains, a weaker condition
defined in [7]. These essentially do not require new ideas, thus we chose to not
include them to avoid unnecessary details and highlight the key ingredients.
At the time of writing this paper, we are working towards implementing the
algorithms described here (using a SAT solver for the NP-hard problems), in
which we plan to include those extensions.

About open problems, we do not know if partial deadlocks can be detected
in Ptime for exclusive LSS, or for 2LSS (not necessarily exclusive). Probabilis-
tic algorithms have proven useful in distributed systems (see, for instance, the
Lehmann-Rabin algorithm [10]), hence one may want to add probabilities to the
model. Finally, versions of the problem with parameterized number of processes
or locks could be of interest.

I would like to thank Anca Muscholl and Igor Walukiewicz for their support
and useful comments.

References

1. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to
the static analysis of concurrent programs with procedures. p.
62–73. POPL ’03, Association for Computing Machinery, New
York, NY, USA (2003). https://doi.org/10.1145/604131.604137,
https://doi.org/10.1145/604131.604137

2. Brotherston, J., Brunet, P., Gorogiannis, N., Kanovich, M.: A compositional
deadlock detector for android java. In: Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering. p. 955–966.
ASE ’21, IEEE Press (2021). https://doi.org/10.1109/ASE51524.2021.9678572,
https://doi.org/10.1109/ASE51524.2021.9678572

3. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8,
https://doi.org/10.1007/978-3-319-10575-8

4. Emerson, E.A., Lei, C.L.: Modalities for model checking: branching time
logic strikes back. Science of Computer Programming 8(3), 275–306
(1987). https://doi.org/https://doi.org/10.1016/0167-6423(87)90036-0,
https://www.sciencedirect.com/science/article/pii/0167642387900360

5. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete
graph problems. Theoretical Computer Science 1(3), 237–267 (1976).
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1,
https://www.sciencedirect.com/science/article/pii/0304397576900591

6. Gimbert, H., Mascle, C., Muscholl, A., Walukiewicz, I.: Distributed Controller
Synthesis for Deadlock Avoidance. In: Bojanczyk, M., Merelli, E., Woodruff, D.P.

https://doi.org/10.1145/604131.604137
https://doi.org/10.1145/604131.604137
https://doi.org/10.1145/604131.604137
https://doi.org/10.1109/ASE51524.2021.9678572
https://doi.org/10.1109/ASE51524.2021.9678572
https://doi.org/10.1109/ASE51524.2021.9678572
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/https://doi.org/10.1016/0167-6423(87)90036-0
https://www.sciencedirect.com/science/article/pii/0167642387900360
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://www.sciencedirect.com/science/article/pii/0304397576900591

34 Corto Mascle

(eds.) 49th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 229, pp. 125:1–125:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.125,
https://drops.dagstuhl.de/opus/volltexte/2022/16466

7. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decid-
ability of pairwise cfl-reachability for threads communicating via locks. In: 2009
24th Annual IEEE Symposium on Logic In Computer Science. pp. 27–36 (2009).
https://doi.org/10.1109/LICS.2009.45

8. Kahlon, V., Gupta, A.: An automata-theoretic approach for model checking threads
for LTL properties. In: 21st Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’06). pp. 101–110 (2006). https://doi.org/10.1109/LICS.2006.11

9. Kahlon, V., Ivancić, F., Gupta, A.: Reasoning about threads commu-
nicating via locks. In: Proceedings of the 17th International Confer-
ence on Computer Aided Verification. p. 505–518. CAV’05, Springer-
Verlag, Berlin, Heidelberg (2005). https://doi.org/10.1007/11513988_49,
https://doi.org/10.1007/11513988_49

10. Lehmann, D., Rabin, M.O.: On the advantages of free choice: A symmetric and fully
distributed solution to the dining philosophers problem. In: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
pp. 133–138 (1981)

11. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent soft-
ware. In: Halbwachs, N., Zuck, L.D. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 11th International Conference,
TACAS 2005, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-
8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3440,
pp. 93–107. Springer (2005). https://doi.org/10.1007/978-3-540-31980-1_7,
https://doi.org/10.1007/978-3-540-31980-1_7

12. Taylor, R.N.: A general-purpose algorithm for ana-
lyzing concurrent programs. Commun. ACM 26(5),
361–376 (may 1983). https://doi.org/10.1145/69586.69587,
https://doi.org/10.1145/69586.69587

13. Zielonka, W.: Notes on finite asynchronous automata. RAIRO Theor. Informat-
ics Appl. 21(2), 99–135 (1987). https://doi.org/10.1051/ita/1987210200991,
https://doi.org/10.1051/ita/1987210200991

https://doi.org/10.4230/LIPIcs.ICALP.2022.125
https://doi.org/10.4230/LIPIcs.ICALP.2022.125
https://drops.dagstuhl.de/opus/volltexte/2022/16466
https://doi.org/10.1109/LICS.2009.45
https://doi.org/10.1109/LICS.2009.45
https://doi.org/10.1109/LICS.2006.11
https://doi.org/10.1109/LICS.2006.11
https://doi.org/10.1007/11513988_49
https://doi.org/10.1007/11513988_49
https://doi.org/10.1007/11513988_49
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/69586.69587
https://doi.org/10.1145/69586.69587
https://doi.org/10.1145/69586.69587
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1051/ita/1987210200991

	Model-checking lock-sharing systems against regular constraints

